

A205018


Least k such that n divides s(k)s(j) for some j satisfying 1<=j<k, where s(j)=j*(j+1).


9



2, 2, 3, 2, 3, 3, 4, 4, 4, 3, 6, 5, 7, 4, 6, 8, 9, 4, 10, 6, 8, 6, 12, 5, 7, 7, 7, 5, 15, 6, 16, 16, 8, 9, 8, 6, 19, 10, 9, 6, 21, 8, 22, 7, 10, 12, 24, 9, 10, 7, 11, 8, 27, 7, 13, 11, 12, 15, 30, 8
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

See A204892 for a discussion and guide to related sequences.


LINKS

Table of n, a(n) for n=1..60.


MATHEMATICA

s[n_] := s[n] = n*(n + 1); z1 = 500; z2 = 60;
Table[s[n], {n, 1, 30}] (* A002378 *)
u[m_] := u[m] = Flatten[Table[s[k]  s[j], {k, 2, z1}, {j, 1, k  1}]][[m]]
Table[u[m], {m, 1, z1}] (* A205016 *)
v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
Table[d[n], {n, 1, z2}] (* A205017 *)
k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n]  1])/2]
m[n_] := m[n] = Floor[(1 + Sqrt[8 n  7])/2]
j[n_] := j[n] = d[n]  m[d[n]] (m[d[n]] + 1)/2
Table[k[n], {n, 1, z2}] (* A205018 *)
Table[j[n], {n, 1, z2}] (* A205028 *)
Table[s[k[n]], {n, 1, z2}] (* A205029 *)
Table[s[j[n]], {n, 1, z2}] (* A205030 *)
Table[s[k[n]]  s[j[n]], {n, 1, z2}] (* A205031 *)
Table[(s[k[n]]  s[j[n]])/n, {n, 1, z2}] (* A205032 *)


CROSSREFS

Cf. A002378, A204892, A205016.
Sequence in context: A303297 A107452 A349198 * A286716 A029213 A029209
Adjacent sequences: A205015 A205016 A205017 * A205019 A205020 A205021


KEYWORD

nonn


AUTHOR

Clark Kimberling, Jan 22 2012


STATUS

approved



